A man in a rowboat must get from point A on one bank to a point B on the opposite bank of a river. The distance BC = a. The width of the river AC = b. At what minimum speed \( v_b \) relative to the water should the boat travel to reach point B? The current velocity is \( v_r \)
\( (v_b \, cos \,\theta +v_r) \,t = a \) → (1)
\(v_b \: sin \,\theta \, t = b \) → (2)
\({{v_b \, cos \,\theta +v_r} \over {v_b\, sin \,\theta}} = {a \over b}\)
\(b\;(v_b \, cos \,\theta+v_r)=a\,{v_b \,sin \,\theta}\) → (3)
\(\text{For minimum of } v_b\) \({{dv_b} \over {d\theta} }= 0\)
\(b({dv_b\over{d\theta}}\, cos\theta-v_bsin\theta) = a(v_bcos \,\theta+{{dv_b}\over{d\theta}}\, sin \,\theta)\)
→ (4)
\(-bv_b \, sin \,\theta = a\,v_b\,cos \,\theta \) or \(tan \,\theta =-{a \over b}\)