\( (v_b \, cos \,\theta + v_r) \,t = a \,\,\color {white} {\text (1)}\)
|
\(v_b \: sin \,\theta \, t = b \,\,\color {white} {\text (2)}\)
|
\({{v_b \, cos \,\theta + v_r} \over {v_b\, sin \,\theta}} = {a \over b}\)
|
\(b\;(v_b \, cos \,\theta+v_r)=a\,{v_b \,sin \,\theta}\;\color {white}{\text (3)}\)
|
\( \text For\; minimum\; of \; v_b \) \({{dv_b} \over {d\theta} }= 0\)
|
|
\(b({dv_b\over{d\theta}}\, cos \,\theta\,-\,v_b\,sin\,\theta) = a(v_b\,cos \,\theta + {{dv_b}\over{d\theta}}\, sin \,\theta) \;\;\color {white}{\text (4)}\)
|
\( -b\,v_b \, sin \,\theta = a\,v_b\,cos \,\theta \;\;\;\text or \;\;\; tan \,\theta =-{a \over b} \)
|
\( b({v_b}{{-b} \over \sqrt{a^2+b^2}}+v_r) = {{av_b} {a \over {\sqrt{a^2+b^2}}}} \)
|
\({b\,v_r}=v_b{a^2 \over \sqrt{a^2+b^2}} + v_b{b^2 \over \sqrt{a^2+b^2}}\)
\(= v_b{{a^2+b^2} \over \sqrt{a^2+b^2}}\)
|
\( b\,v_r = v_b{\sqrt{a^2+b^2}} \)
\( \;\;\;\text or \;\;\; \color {white} v_b={{b\,v_r} / \sqrt{a^2+b^2}} \)
|
|